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A Model for the Prediction of Electron-transfer Rates in the Highly Exergonic 
Region, applied to the Reaction between Solvated Electrons and Arenes in 
Tetrahydrofuran 
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An harmonic oscillator perturbations to the classical model of outer-sphere electron -transfer reactions are 
examined and used to  fit rate constant data in the exergonic Marcus-invented region. Oscillator energy 
functions of the type G ( x )  = ax2 (1 + bx2) and G ( x )  = ax2 ( 1  + bx2 + cx") are used. Here x is the reaction 
co-ordinate for electron transfer which has the value zero at the origin of the donor and unity at the origin 
of the acceptor. The function G(x)  = ax2[1 + b x 2 / d m ) ] ,  where a, b, and c are constants, an 
oscillator with variable anharmonicity term, very successfully reproduces the data for reaction between 
solvated electrons and arenes in tetrahydrofuran. Such a model will be useful in constructing the energy 
su rf ace for s i n g le - electron -transfer reactions. 

The classical model of outer-sphere electron-transfer reactions 
developed by Marcus,' Hush,2 S ~ t i n , ~  and others is very 
successful in rationalizing rates where the driving force is not 
too large. It is a potentially useful tool in the construction of an 
energy surface for electron-transfer reactions. This construction 
will form a part of the complete energy surface for single- 
electron transfer (SET) reactions where electron transfer is 
followed by fast unimolecular bond ~leavage.~ An important 
drawback from such applications is that the classical model 
does not successfully predict the rate of electron transfer for 
strongly exergonic reactions. We demonstrate that by modi- 
fying the shape of the energy well which contains the electron to 
be transferred, this classical model can be extended to give 
satisfactory predictions of reaction rates in this exergonic region 
as well as in the region where AGO cu. 0. The utility of the 
classical model for the construction of SET reaction profiles is 
thereby enhanced. 

In the classical model, outer-sphere electron-transfer re- 
actions are considered subject to an activation energy due to 
solvent reorganization and bond reorganization processes, and 
to occur when the particles are at the van der Waals collision 
distance apart. Solvent dipole fluctuations and bond vibrations 
are treated as harmonic oscillators. Weak interaction between 
the donor and acceptor potential energy surfaces is considered. 
The activation free energy for electron transfer with a free energy 
difference AGO, corrected for any electrostatic work involved in 
bringing the particles together, is given by the Marcus equation 
(l).' Here, a is the total reorganization energy due to solvent 

AGS = (a/4)(1 + A G " / u ) ~  (1) 

and bond reorganization. The rate constant for bimolcular 
electron transfer (kacJ is given by equation (2) where 2 is the 

kaCt = K Z exp ( - A G % / R T )  

bimolecular collision rate and K is unity for adiabatic electron 
transfer. Theory is concerned with predicting the reorganization 
energy term for a given reaction. 

We are concerned in this paper with electron-transfer 
processes involving arenes and arene radical-ions. It is known 
for these reactions that solvent fluctuations are the major 
contributor to the reorganization energy term.' This energy 
term is usually considered to be the same for various arene and 
arene radical-ion partners. A prediction of the Marcus theory is 

that the reaction rate decreases with increasing driving force 
in the region of highly exergonic electron-transfer reactions. 
Such an inverted region has been difficult to demonstrate 
experimentally because reaction rates in the region of interest are 
faster than the rate for bimolecular diffusion in most solvents. 
The following relevant data come from three different 
laboratories. 

Scandola has shown that electron-transfer occurs with 
diffusion control, even for highly exergonic reactions in 
acetonitrile, where an inverted region is predicted. Millar 
circumvented the diffusion control problem by measuring the 
rate of electron-transfer between an arene radical-anion and an 
arene, both attached to the same steroid framework. An 
inverted region was demonstrated but the log kact uersus AE" 
curve is not parabolic as predicted from the Marcus equation. 
Salmon8 examined the rate of reaction between the solvated 
electron and arenes in tetrahydrofuran, where the bimolecular 
diffusion rate is large enough to reveal that the reaction rate 
enters an inverted region. The dependence of reaction rate on 
driving force was not that predicted by the Marcus equation. 
Solvent reorganization is the principal process contributing to 
the reorganization energy term for this process. 

In order to improve agreement between theory and 
experiment, workers have extended the classical model to 
include electron transfer when particles are further than the van 
der Waals collision distance apart.g A quantum-mechanical 
model has also been proposed and this predicts relationships 
between reaction rate and driving force that are more similar to 
those found by experiment." Some of the results ' discussed in 
this paper have previously been interpreted using the quantum- 
mechanical model. 

Rate constants for the photo-induced charge-separation and 
dark charge-recombination between porphyrin and quinone 
molecules attached to a rigid frame have also been obtained." 
An inverted region, similar to that found by Millar, was 
observed. For such charge-separated to neutral-state reactions, 
the vibrational frequency of the solvent mode in the two states is 
expected to be different, The reactions are not covered by the 
discussion here which relates only to electron transfer with no 
overall change in the charge attached to the reacting pair. A 
theoretical discussion of charge-separation reactions has been 
made.'* 

Modijied Potential Energy Functions.-Our aim is to produce 
a scheme that will be of assistance in constructing a reaction 
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Figure 1. Shapes of energy functions: - parabolic, G(x)  = ax2; - - - 
anharmonic parabola, G(x)  = axz (1 + bx2) with b = 0.4; . . . . . 
function G(x)  = axz [l + bx2/,/-] with b = 0.4 and cz = 
1.65. For the three cases, a was obtained by taking G(x, 0.5) = 15 kJ 
mol-' 

profile for SET processes. Define the reaction co-ordinate x for 
the electron-transfer step as zero at the minimum of the electron 
donor well and unity at the minimum of the electron ,acceptor 
well. There is only weak interaction, with no preferred direc- 
tion, between the donor and acceptor functions during electron 
transfer. In consequence, the individual energy functions must 
be even-symmetrical. Expansion of the energy function as a 
Taylor series therefore has the form (3 ) .  The term G(0) is zero by 
convention. 

G(x) = G(0) + (d2G/dx2),=0*x2/2! + 
(d4G/d~4),=O*~4/4! + (d6G/dx6),=0*x6/6! + ( 3 )  

(a) Successive approximations to the Taylor series. (i) The 
parabolic equation (4) is a first approximation to this expansion 

G(x) = ax2 (4) 

and the Marcus equation for AGS is derived from this. 
(ii) A second approximation is the function (5) where a and b 

G(x) = ax2(1 + bx2)  ( 5 )  

are constants to be determined. It is the simplest anharmoiiic 
oscillator model for solvent fluctuations. The anharmonicity 
constant, b, must be positive to reduce the discrepancy between 
Marcus predictions and experiment for rate constants in the 
exergonic region. Related anharmonic and parabolic potential 
energy functions are compared in Figure 1. 

For convenience in the calculation of predicted electron- 
transfer rate constants based on this energy function, energy and 
driving force are scaled by writing y = G(x)/a and yo  = AG"/a, 
respectively. The two overlapping wells between which electron 
transfer occurs are now described by equations (6)  and (7). At 
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Figure 2. Electron-transfer rate constant versus driving force curves 
obtained using the function G(x)  = ax2 (1 + bx2) with AG*(O) = 15 
kJ mol-' and Z = 3.0 x 10" 1 mol-' 

y - yo = (x - 1)2 [1 + b(x - 1)2] (7) 

the point of intersection of these two curves we have equation 
(8). Solution of equation (8) gives the value of x at this point of 

x3 - (3/2)x2 + [(2b + 1)/2b]x - (b + yo + 1)/4b = 0 (8) 

intersection. There is only weak interaction between the energy 
wells so substitution of this value into equation (5) gives AGt for 
the process. Then k,,, is found using expression (9). 

kact = Z exp ( -AGS/RT) (9) 

This procedure was used to derive log k,,, uersus A F  data 
for Figure 2. Following usual practice in the electrochemical 
literature, the value of a is defined through the free energy of 
activation, AGS(0), for the symmetrical self-exchange reaction 
where AGO = 0 and x = 0.5. Typical values of 2 = 3 x 10'' 1 
mol-' s-' and AG'(0) = 15 kJ mol-' were selected. The con- 
stant b was given an arbitrary value for each curve in Figure 2 
and then the corresponding value of a could be obtained. 

To obtain the data for one curve, a range of values of AE" (= 
- AG"/F) were selected and the corresponding values of log kact 

computed as follows. The value ofy, was obtained and equation 
(8) was then solved for x using Cardan's method l 3  to find the 
one real root. The value of y in equation (5) corresponding to 
this value of x is AGs/a. Hence the value of AGS, and from this 
log kaCt, can be obtained. 

Inspection of a range of curves, from which only two are 
selected in Figure 2, suggested that we could model the rate data 
for electron transfer between groups attached to a steroid 
f r a m e ~ o r k . ~  There are three adjustable parameters, AGS(0), 6, 
and 2. This reaction is unimolecular so 2 is a frequency factor. 

Systematic variations of the parameters was carried out and a 
best fit of computed curves to experimental data obtained after 
visual inspection. The principal effect of a change in a parameter 
is as follows. Adjustment of 2 changes the ordinate at the curve 
maximum. Adjustment of AGS(0) changes the abscissa at the 
curve maximum and the relative position of this maximum with 
respect to where the curve crosses the vertical axis. Raising the 
value of b enhances the deviation from the parabolic 
relationship for large values of AE". 

The best fit with experimental data is shown in Figure 3 using 
AGS(0) = 21 & 1 kJ mol-', b = 0.35 t 0.02,Z = (5.4 f 0.5) x 
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Figure 3. Rate constants for electron transfer between an arene radical- 
anion and an arene, both attached to a steroid skeleton, under driving 
force AE", from ref. 7. The curve is computed using function (5) with 
AG*(O) = 21.0 kJ mol-', b = 0.35, Z = 5.4 x lo9 s-' 

lo9 s-'. Alteration of these values over the range indicated is 
necessary to produce a noticeable change in the shape of the 
calculated curve. The value adopted for AGS(0)  from the 
calculations is larger than that for related bimolecular electron- 
transfer processes where the average valueI4 is ca. 15 kJ mo1-'. 
Such a result is expected since the reacting arenes are held apart 
by more than the sum of their van der Waals radii. The fit is as 
good as that achieved using the quantum mechanical treatment 
which also required a choice of three parameters.' 

(iii) Equation (5) cannot model the reaction between solvated 
electrons and arenes in a satisfactory manner because the 
observed rate profile8 shows a much shallower dip in the 
exergonic region than in Figure 3. Therefore, a third 
approximation to the energy well was used to model these 
results, taking function (10) where a, by and c are constants to be 
determined. 

G(x)  = ax2 (1 + bx2 + cx4) (10) 

The value of x at the point of intersection of this donor well 
with an acceptor well defined by expression (1 1) is given by the 

real root of an equation of the fifth degree in x. In order to 
obtain electron-transfer rate constants, energy and driving force 
were scaled as in the previous example by substituting y = 
G(x)/a and yo = A P / a .  A range of values for AEo was selected 
and converted to the corresponding values of yo. The fifth- 
degree equation in x was then solved using the Newton- 
Raphson method15 and A G f ( x )  obtained for each point by 
substituting this value of x into equation (10). A value for kact at 
each point was calculated as before and then corrected for 
bimolecular diffusion (rate constant kdiff,) to give the electron- 
transfer rate constant k, by using equation (12). 

There are five parameters AG*(O), by c, 2, and k,,,. which can 
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Figure 4. Rate constants for solvated electron attachment to arenes in 
tetrahydrofuran under driving force AE" from ref. 8. The curve is 
computed using function (10) with AGt(0) = 13 kJ mol-', b = 0.5, c = 
0.5, Z = 2.51 x 10" 1 mof-' s-l, kdill. = 2.92 x 10" 1 mol-' s-l, E" 
for solvated electron -2.94 V versus s.c.e. Substrates are: (1) 2,4,6- 
trimethylpyridine; (2) phenol; (3) 4-aminobenzonitrile; (4) pyridine; (5) 
pyrimidine; (6) a-methylstyrene; (7) benzonitrile; (8) biphenyl; (9) stil- 
bene; (10) pyrene; (1 l)  9,lO-diphenylanthracene; (12) nitrobenzene; (1 3) 
rn-dinitrobenzene; (15) benzoquinone; (16) tetracyanoethene; (17) gal- 
vinoxyl; (1 8) tetrachloro- 1,4-benzoquinone; (19) 2,2'-diphenyl-l-picryl- 
hydrazy 1 

be adjusted to obtain a fit between the computed curve for log k, 
uersus AE" and the experimental data. The principal effect of a 
change in a parameter value is as follows. Adjustment of 2 and 
kdjff. changes the ordinate at the curve maximum and the shape 
of the curve in this region. Adjustment of AG*(O) changes the 
abscissa at the curve maximum and the shape of the curve at the 
lower left. Adjustment of b and c changes the shape of the right- 
hand section of the curve. 

Computed graphs of log k, uersus AEo were compared with 
the experimental values of log k,  uersus E* for the electron 
acceptor and shifted along the potential axis to achieve the best 
fit. The shift gives E" [uersus saturated calomel electrode (s.c.e.) 
reference electrode] for the solvated electron in the solvent for 
Et measurements. It is necessary to assume that AE" for any 
solvated electron, electron acceptor pair is the same in tetra- 
hydrofuran as in the solvent for Et measurements. For 
related compounds this assumption is valid. ' 

Systematic variation of the parameters then gave the best 
fit shown in Figure 4. The total of six adjustable para- 
meters have values AG'(0) 13 * 1 kJ mol-', b = 0.10 * 0.05, 

(2.5 & 0.1) x 10'' 1 mol-' s-' and in the solvent for E+ 
measurements (solvated electron) = -2.94 f 0.05 V uersus 
s.c.e. Alteration of these values over the range indicated is 
required to produce a noticeable change in the calculated curve. 

Function (10) is moderately successful in predicting the trend 
of results for reaction between solvated electrons and A 
shallow inverted region in the rate constant uersus driving force 
relationship is predicted, The energy function described in the 
next paragraph reproduces this rate constant data with much 
greater success. 

for electron transfer 
between species in acetonitrile show an extended range of 
diffusion control in the exergonic region. When kdiff. is given the 
value of 1.5 x 10" 1 mol-' s-' to be expected in acetonitrile, 
then such an extended range of diffusion control is predicted 
and this model can successfully reproduce the experimental rate 
profile. 

C = 0.50 & 0.05, = (2.9 & 0.1) X 10" 1 mOl-' S-', kdiff. = 

The rate measurements of Scandola 
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Figure 5. Rate constants for solvated electron attachment to arenes in 
tetrahydrofuran under driving force AE" from ref. 8. The curve is 
computed using the function (13) with AG*(O) = 13 kJ mol-', b = 0.10, 
cz = 1.65, 2 = 2.92 x 10" 1 mol-' s-', kdiff. = 2.51 x 10" 1 mol-' 
s-l, E" for solvated electron = -2.94 V uerms m e .  Substrates iden- 
tified in Figure 4 

(b) A new energyfunction. An alternative energy function that 
can be used to predict the results for reaction between the 
solvated electron and arenes suggests itself because the rate 
constants measured in the most exergonic regions in Figure 4 
seem distributed about a plateau. The terms of the Taylor series 
beyond the first can be approximated by some suitable function 
and equation (13) appeared convenient. This empirical approach 
to our problem is exactly that used by Morse" when he 
proposed the energy function for the bond stretching. Its 
justification is that the experimental data can be reproduced. 
Expression (13) is compared in Figure 1 with the simple 
harmonic oscillator. 

G(x) = ax2[1 + b x 2 / d m ) ]  

This function is parabolic for small values of x .  As x 
approaches the value of c then AG(x) approaches infinity. When 
A G  is large and negative for electron transfer between two 
centres, the activation energy for the process becomes inde- 
pendent of AGO and approaches the value of G(x) when x = 
(1 - c). 

We proceeded to compute data for log k, versus AE" for 
electron transfer between two energy wells exactly as in section 
(a) (iii). The Newton-Raphson method was used to find the 
value of x at the point of intersection of the donor and acceptor 
wells. The value of G(x) at this point is AGS for the electron- 
transfer process. A value for k,,, was obtained from AGS and 
corrected for bimolecular diffusion. 

There are five parameters AG$(O), b, c, 2, and kdiff. that can be 
adjusted to obtain a fit between the computed curve for log k, 
versus AE" and the experimental data8 for reaction between 
solvated electrons and arenes in tetrahydrofuran. With the 
exception of c, adjustment of the parameters changes the shape 
of the curve as discussed in section (a) (iii). Adjustment of c 
changes the ordinate at the plateau level. At this plateau, AGS = 
G(c - 1) given by equation (13). 

As before under section (a) (iii), the computed curves of log k, 
versus AEo were shifted along the potential axis to achieve the 
best fit with the experimental results for log k, uersus E+ for the 
electron acceptor. The amount of shift corresponds to E" versus 
s.c.e. for the solvated electron. 

The fit with experimental data is shown in Figure 5 where 
AGS(0) = 13 k 1 kJ mol-', b = 0.1 Ifr 0.05, c2 = 1.65 k 0.10, 
2 = (2.9 & 0.1) x 10' ' 1 mol-' s-', kdif,. = (2.5 f 0.1) x 10'' 1 
mol-' s-', and E" (solvated electron) = -2.94 f 0.05 V versus 
s.c.e. The fit with experimental data shown in Figure 5 is very 
good up to the region where the driving force AE" = 2.0 V. 
Point 5 due to pyrimidine does not follow the general trend of 
results and we have no explanation for this. The calculated line 
fits the average trend of results in the region E" > 2.0 V but 
these results show much more scatter than the previous ones. 

When kdirf. is given a value of 1.5 x 10" 1 mol-' s-' expected 
in acetonitrile, then the rate measurements of Scandola6 can 
also be reproduced. 

(c) Further investigations. The essential requirements for an 
alternative energy function are that it should be parabolic for 
small values of the parameter x and become steeper than a 
parabola for large values of x .  Other functions can probably be 
found that will reproduce the experimental data for log k, as a 
function of AE". 

We have also used function (14) which is similar in form to 

G(x) = ax2[1 + b/(c2 - x2) ]  (14) 

equation (13). Beginning with equation (14), we can generate 
log k, versus AEo curves which are almost indistinguishable 
from those obtained using equation (13). Figure 5 is repro- 
duced, within the limits of experimental errors, when we use 
the following constants, AG'(0) = 13 f 1 kJ mol-', b = 0.25 &- 
0.05, c2 = 1.65 & 0.10, 2 = (2.9 4 0.1) x 10" 1 mol-' s-', 
kdiff. = (2.5 & 0.1) x 10" 1 mol-' s-', and E" (solvated elec- 
tron) = -2.94 k 0.05 V versus s.c.e. 

We prefer function (13) however because this is easily seen as 
an anharmonic expression with a variable anharmonicity 
constant. 

Conclusions.-A reaction co-ordinate, x,  is defined for the 
electron-transfer process between two species. It is given the 
value zero at the minimum of the donor energy function and 
unity at the minimum of the acceptor energy function. These 
energy functions are even symmetrical functions of x and are 
expressed as a Taylor expansion in X where n is even. 
Truncation of the series at x2  gives the classical harmonic 
oscillator model for electron transfer which operates well 
outside the strongly exergonic region. Truncation of the series 
at x4  gives an energy function which can be used to fit the rate 
data for electron transfer between groups attached to a rigid 
steroidal framework. Truncation of the series at x6 allows a 
moderately good fit for the rate data from reactions between the 
solvated electrons and arenes. This latter rate data are however 
better reproduced using the energy function (13). 

These successive approximations are a convenient mathe- 
matical operation for modelling a complex situation and the 
coefficients of x4 and higher terms have no physical significance. 
The coefficient of x2  is the Marcus reorganization energy. 

The advantage of this approach is that the coefficients of the 
expression (1 3) which models the bimolecular electron-transfer 
reaction can be applied to other situations. The energy function 
can then be used to construct reaction co-ordinate diagrams for 
the reversible electron-transfer part of a multistep SET reaction. 

Deviations between predictions of electron-transfer rate 
based on the Marcus equation with those based on expression 
(13) become important when AE" > 0.5 V. Expression (13) 
reproduces electron-transfer rate data for reaction between 
solvated electrons and arenes until AE" > 2.0 V. 
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